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ABSTRACT

The implementation of artificial intelligence (Al) techniques and tools in all agricultural sectors can ensure the
transformation of agriculture into a smarter, more efficient and more sustainable sector, ready to face the
challenges of the future. The paper provides a review of recent applications of Al, focused on crop monitoring,
precision agriculture, robotics, animal management and supply chain optimization, with examples of research,
studies and applications carried out in this regard in the last 5 years. The general conclusion is that, in the
current conditions of the need to develop the agricultural sector on a sustainable basis and for economic
efficiency, the use of emerging technologies (Al) and their implementation in all activities and processes related
to agriculture must be accelerated.

ABSTRACT

Implementarea tehnicilor si instrumentelor de inteligenta artificiala (IA) in toate sectoarele agricole poate
asigura transformarea agriculturii intr-un sector mai inteligent, mai eficient si mai sustenabil, pregétit sa faca
fatd provocarilor viitorului. Lucrarea oferd o trecere in revistd a aplicatiilor recente ale IA, axate pe
monitorizarea culturilor, agricultura de precizie, roboticd, managementul animalelor si optimizarea lantului de
aprovizionare, cu exemple de cercetéri, studii si aplicatii efectuate in acest sens in ultimii 5 ani. Concluzia
generalé este cé, in conditiile actuale ale necesitétii dezvoltérii sectorului agricol pe baze sustenabile si pentru
eficientd economicd, trebuie accelerata utilizarea tehnologiilor emergente (Al) si implementarea acestora in
toate activitatile si procesele legate de agricultura.

INTRODUCTION

The challenges of the future through the development and implementation of Al in contemporary human
society also involve agriculture, agriculture being (if not the most important then) one of the most important
industries. The need for agriculture to be able to provide the necessary food for humanity, which is in
continuous growth, together with maintaining high standards in terms of sustainability of agricultural
technologies and processes, leads to the adoption of solutions that increase the efficiency of this industry. This
is where Al tools and techniques come into play, which together with the increase in the degree of
computerization of agriculture, manage through their implementation to transform agriculture into a smarter,
more efficient and more sustainable sector, ready to face the challenges of the future (Sharma et al., 2022;
Elbasi et al., 2024). Thus, it can be said that the need for studies and research carried out in this direction will
revolutionize agriculture, offering advanced solutions to face contemporary challenges, from global population
growth to climate change.

The directions of application of Al in the agricultural industry are numerous (due to the complex nature
of agriculture), from the use of robots and autonomous systems to market analysis, financing and insurance
of agricultural farms, and from the point of view of the most important directions of application of Al (which will
be discussed further in this article), they are presented in Figure 1.
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Fig. 1 - Main directions of application of artificial intelligence in agriculture

The interconnections between these technologies allow for data-driven decision-making and automation
in smart farm management (Fig. 2). Figure 2 shows a flow chart of how advanced machine learning techniques
are integrated into modern agricultural management systems. Deep Learning (DL), Reinforcement Learning
(RL), and Natural Language Processing (NLP) are fundamental technologies because they feed into a
centralized machine learning (ML) environment, which serves as the main processing centre where models
are trained, refined, and applied. It then dynamically interacts with datasets that provide the raw information
needed for learning and also receives feedback from the machine learning environment to improve future
predictions and decisions. Based on the datasets, agricultural management (the practical application layer) is
performed, by taking the information from the data and Al models and applying them to real-world agricultural
operations. Al-based agricultural management can be considered a decision support system that synthesizes
all this information to help farmers make informed, data-driven choices.
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Fig. 2 - Al techniques applicable to intelligent farm management (adapted from Wei et al., 2024)

The application of artificial intelligence models and tools in agriculture presents a number of challenges,
one of which is the large initial investment required to implement Al technologies, including the price of sensors
and specialized hardware and software (which can be prohibitive for small and medium-sized farms).
Additionally, problems with easy and continuous internet connectivity are common in rural areas, making it
difficult to collect and send data in real time, which can affect the effectiveness of artificial intelligence systems
that depend on continuous data acquisition, storage, and analysis.

Technical complexity and skills shortages are another major obstacle, as many farmers may not have
the technical knowledge to run and maintain Al systems. This can make people reluctant to adopt new
technologies, especially those who are more accustomed to conventional farming practices. In addition, there
are concerns about the ownership and confidentiality of production data. The broad applicability of Al models
can also be limited by the variability of agricultural environments. This is because different regions have
different soil types, weather patterns, and crop varieties, making it difficult to create Al solutions that work
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everywhere. Technology developers, policymakers, and the farming community must work together to
overcome these obstacles and ensure that Al solutions are available, affordable, tailored to farmers’ needs,
and provide effective and sustainable solutions. In order to increase the level of knowledge of the application
potential of Al tools and technologies in agriculture, this paper, in the form of a review, aims to present the
most current research conducted (the last 5 years) and the results obtained in the application of Al in several
areas of interest in the agricultural sector.

CROP MONITORING AND ANALYSIS

Crop monitoring and analysis focuses on collecting and interpreting data on plant health and
development, enabling rapid and informed interventions by farmers to increase agricultural production (Chiu
et. al., 2020; Ipate et al., 2024). The main Al technologies and tools for development and application are the
use of drones and remote sensing technologies, computer vision and pattern recognition, and predictive data
analysis (Fig. 3).
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Fig. 3 - Applications of artificial intelligence in crop monitoring and analysis

Drones equipped with advanced sensors (multispectral, hyperspectral, thermal) fly over fields and
collect massive amounts of data (Milas, 2018; Zhang and Zhu, 2023). This data includes information about
leaf health (principally by considering the vegetation index - NDVI), soil moisture level, the presence of water
or nutritional stress and early detection of pests and diseases. There are already developed and applied Al
algorithms that analyse this captured data to create variability maps, indicating areas that require attention,
and the workflow of using a ML application is presented in Figure 4.
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Fig. 4 - Workflow of an ML application in crop yield production prediction (adapted from Gupta et al., 2022)

The use of computer vision and pattern recognition is achieved through high-resolution cameras
mounted on agricultural machinery and/or autonomous vehicles or even directly on plants, which capture
detailed images in real time. Furthermore, computer vision systems, powered by Al, can accurately identify
crop weeds (type and density), count plants, assess crop maturity, and detect early signs of disease or insect
infestation (Patricio and Rieder, 2018). This information allows farmers to make informed decisions regarding
the application of specific treatments and reduce/eliminate potential production losses. Cheng et al. (2025)
developed a method for detecting adult peach moths based on an Al model YOLOv8m to address the difficult
problem of detecting peach moths. The accuracy of the improved model increased by 3.4% compared to
YOLOv8m. The recall improved by 2.1%, and the mAP parameter improved by 1.2%. The proposed solution
shows an improvement in the effectiveness of the model in detecting adult peach moths, and the results
provide solid technical support for the subsequent real-time monitoring of peach moths.
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In response to the recommendations of the Food and Agriculture Organization of the United Nations
(2014) and the Committee on Agriculture and Rural Development of the European Parliament (2009) regarding
the sustainable development of agriculture, current research efforts focus on increasing crop yields and
reducing pesticide consumption by prioritizing non-chemical methods (agrotechnical, physical, biological, etc.)
and applying pesticides only when strictly necessary, using appropriate monitoring tools (warning, forecasting,
and early diagnosis). Al models employed for crop monitoring are generally structured into three functional
modules: data collection, intelligent data processing through Al models, and generation of actionable
recommendations for crop management (Fig. 5).
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Fig. 5 — Al workflow model for culture monitoring

Al based models integrate heterogeneous primary inputs obtained from complementary information
sources, including RGB, multispectral, and hyperspectral imagery, data captured by drones, unmanned aerial
vehicles (UAV), or fixed cameras; real-time measurements provided by in-situ sensors (microclimate, humidity,
soil parameters, insect population density, etc.); as well as direct field observations conducted by operators or
farmers. The quality and diversity of visual data, affected by species differences, illumination conditions,
background complexity, and disease development stages, are critical factors in developing robust and
generalizable Al models for agricultural applications. Significant accuracy variations (ranging from 60% to
100%) have been reported depending on image dataset diversity in terms of species, lighting conditions, and
background variability (Barbedo, 2018). De Silva and Brown (2023) reported improved disease detection
accuracy in apple crops (exceeding 98%) using multispectral imagery acquired from multiple locations,
demonstrating that both additional spectral features and contextual variability (location, illumination)
substantially enhance model performance. Furthermore, the deployment of multispectral and hyperspectral
sensors—capable of capturing information in spectral bands invisible to the human eye (e.g., Near-Infrared
NIR and Red Edge)—facilitates early stress detection and improves the generalization capability of CNN
(Zandi et al., 2025).

The Al processing module employs machine learning and DL algorithms based on convolutional neural
networks (CNN) for the identification and prediction of biotic stress factors (diseases, pests, and weeds). CNN
architectures used for the acquisition and processing of agricultural images, encompassing registration,
classification, detection, and segmentation stages (Fig. 6), provide high levels of accuracy and precision in
detection, prediction, and the generation of recommendations for Integrated Pest Management (IPM)
applications. Current research highlights multiple opportunities to enhance Al model performance through the
implementation of optimized and task-specific CNN architectures tailored to each stage of the image
processing workflow.

Data Image Image Object Image Actionable
Acquisition Registration Classification Detection Segmentation Recommendation

Fig. 6 — Sequence of agricultural image processing stages
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Image registration (the geometric alignment of images acquired from different sources such as drones,
satellites, and multispectral or hyperspectral cameras) ensures both temporal and spectral data consistency.
In agricultural applications, this stage is critical for temporal series comparison (e.g., monitoring water stress
and disease progression), multisensory data fusion (RGB, NIR, thermal), and geometric calibration of UAV
imagery with satellite orthophotos. Traditional feature-matching methods (SIFT, SURF, ORB, RANSAC) have
proven effective but remain limited under varying perspective, illumination, and texture conditions (Cocianu et
al., 2023). Conversely, convolutional neural networks provide a robust framework for registering images from
heterogeneous sources. Correlation-based architectures for UAV and multispectral image registration in
temporal analysis (Rocco et al., 2017), spatial transformer modules integrated into agricultural CNN for
automatic correction of UAV flight distortions (Reedha et al., 2022), hybrid CNN-Transformer models
combining local feature extraction with global correspondence (Li et al., 2024), and radiometric as well as
orthorectification procedures based on GPS and DEM models (Habib et al., 2016) have demonstrated
significant improvements in geometric and radiometric accuracy. Furthermore, the integration of learned
feature-matching algorithms (SuperPoint, SuperGlue) and fine-tuning on locally collected agricultural datasets
further reduces alignment errors to below 1-2 pixels (Jiang et al., 2024; Liu et al., 2023), providing a solid foundation
for high-resolution multisensory data fusion and minimizing error propagation in subsequent processing stages.

Image classification based on CNN provides superior accuracy compared to traditional approaches
relying on handcrafted feature descriptors. Models such as ResNet, DenseNet, EfficientNet, and Inception
enable robust identification of plant diseases, growth stages, and species, while transfer learning applied to
agricultural datasets significantly enhances model accuracy and generalization capability (Ferentinos, 2018;
Cai et al., 2023; Ali et al., 2025). Recent studies highlight a transition toward hybrid CNN-Transformer
architectures, which combine the local feature extraction strengths of CNN with the global attention
mechanisms of Transformer-based models (e.g., Vision Transformer, and Swin Transformer). These
architectures achieve high performance in UAV-based crop classification, particularly under conditions of
atmospheric variability (Guo et al., 2025).

Object detection in agricultural imagery represents a key domain for the automation of crop monitoring
processes, being applied in weed identification, pest detection, disease symptom recognition, and fruit
inventory estimation. Recent advances in deep learning have led to the development of CNN-based
architectures and advanced object detectors such as YOLO, Faster R-CNN, SSD, and RetinaNet. One-stage
models such as YOLOv5—-v8 and SSD are widely employed for real-time weed detection due to their high
inference speed and efficient deployment on ground or UAV platforms (Liu et al., 2024). In contrast, two-stage
detectors such as Faster R-CNN provide higher precision when identifying small or partially occluded objects,
making them suitable for pest detection and subtle symptom analysis (Li et al., 2024). To enhance
performance, recent research incorporates data augmentation, transfer learning from pre-trained backbones
(ResNet, EfficientNet), multi-scale architectures (FPN, BiFPN), and attention modules for capturing contextual
information (Peng et al., 2022). Additionally, the use of multispectral imagery and Red Edge/NIR sensors
facilitates early detection of plant stress (Darbyshire et al., 2024). State-of-the-art models such as YOLOv8
and RetinaNet, adapted for agricultural applications, achieve detection accuracies exceeding 90% under
controlled conditions; however, challenges remain under varying illumination, texture, and object density
(Popescu et al., 2023). Overall, the combination of high-speed detectors with advanced optimization
techniques enables the development of robust smart spraying, precision weeding, and automated crop health
monitoring systems. Current research trends focus on lightweight models for edge deployment, multi-temporal
detection, and multisensory data fusion to further improve accuracy and robustness (Guo et al., 2023).

Image segmentation using traditional methods based on vegetation indices (NDVI, ExG, VARI) or
algorithms such as thresholding and region growing provides limited performance under conditions of spectral
variability, uneven illumination, or crop—soil overlap (Lei et al., 2023). The evolution of DL techniques has
enabled a transition toward fully convolutional network (FCN) architectures, including U-Net, SegNet,
DeepLabv3+, and modern hybrid CNN-Transformer variants. Among these, U-Net and its derivatives (U-
Net++, Attention U-Net) have become predominant for leaf and disease-affected area segmentation due to
their ability to preserve fine spatial details (Khan and Jung, 2024). DeepLabv3+ and HRNet have demonstrated
superior performance in weed segmentation and crop-row delineation, benefiting from the integration of dilated
convolution and feature pyramid fusion modules (Shao et al., 2025). The integration of multispectral and
hyperspectral sensors, combined with feature-level data fusion, has significantly improved segmentation
accuracy under both abiotic and biotic stress conditions (Chroni et al., 2024). In conclusion, DL-based
segmentation provides a robust foundation for the development of automated crop monitoring systems,
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enabling precise plant health assessment, integrated weed control, and the implementation of VRA
technologies.

Al models designed for generating quantifiable agronomic recommendations integrate visual entities
extracted from multispectral imagery, vegetation indices (NDVI, NDRE, GNDVI), and pedoclimatic information
to produce actionable decisions (e.g., optimal fertilizer rates, parcel-level irrigation volumes). By correlating
these variables with phenological stages, Al models can identify optimal intervention windows and estimate
crop response to agricultural inputs (Chen et al., 2025). Hybrid architectures combining CNN with Transformer
modules enable efficient fusion of visual and contextual information, generating high-precision prescription
maps for precision agriculture (Wang, 2025). Feature-level fusion between spectral channels and
meteorological parameters significantly enhances system robustness under variable illumination and climatic
conditions, reducing estimation errors related to abiotic and biotic stress. Moreover, integrating time-series
vegetation indices and climate data into Long Short-Term Memory (LSTM) models supports dynamic prediction
of vegetative activity and yield performance (Nieto et al., 2021). Model validation is conducted through local
calibration using experimental dose—response data and in-field feedback, supporting continuous improvement
of model accuracy and user confidence. Overall, these developments position Al models at the intersection of
image analytics, phenology, and agronomic decision-making, providing a robust framework for generating
quantifiable and sustainable recommendations in smart agriculture (Khose and Mailapalli, 2024).

Systematic optimization of each stage—from data acquisition to the generation of agronomic
recommendations—results in a significant cumulative improvement in overall system performance. The
integration of these strategies has led to 10—-25% increases in overall accuracy and 30—40% reductions in
false alarm rates for disease, pest, and weed detection, thereby enhancing the efficiency of Decision Support
Systems (DSS) and Variable Rate Application (VRA) technologies.

Anticipating the impact of extreme weather conditions and optimizing crop planting and rotation
strategies can be achieved by processing, analysing, and modeling historical data on crop yields, weather
conditions, soil types, farming practices, and market prices with Al. Based on these diverse data analyses, Al
predictive models can estimate future yields, anticipate the impact of extreme weather conditions, optimize
crop planting and rotation strategies, and predict which crops will be most profitable in a given year, given
weather forecasts and market demand. The results of the study by Abu Jabed and Azmi Murad (2024)
comprehensively demonstrate the transformative potential of artificial intelligence techniques and tools in
improving the accuracy of crop yield estimation, ultimately improving agricultural planning and resource
management. Artificial intelligence-based models offer new pathways for sustainable agriculture in a constantly
evolving world, addressing the challenges posed by geographical diversity, crop heterogeneity, and changing
environmental conditions.

PRECISION AGRICULTURE

The field of precision agriculture represents an innovative approach that optimizes the use of resources
at the micro level, to reduce waste and increase the efficiency of agricultural processes. Through the
possibilities offered by Al implemented in the intelligent management of irrigation, personalized fertilization and
plant nutrition and especially the selective application of pesticides and herbicides, the degree of sustainability
of agricultural production has been increased (Fig. 7).
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Fig. 7 - Applications of artificial intelligence in precision agriculture
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In the case of intelligent irrigation management, Al-based automated systems use data from soil
moisture sensors, weather stations, climate forecasts, and/or satellite data to calculate the exact water
requirement for each portion of the agricultural field. Sustainable agriculture depends on efficient water
management, and the integration of contemporary technologies such as artificial intelligence and the Internet
of Things (IoT) into irrigation systems offers creative ways to maximize resource utilization (Hussain et al.,
2024; Abdelmoneim et al, 2025). Through various optimization algorithms, the system decides when and how
much to irrigate, delivering water only where it is needed. This significantly reduces the overall water
consumption required for irrigation in addition to reducing the energy used to pump water into irrigation
systems. Moreover, due to their versatility, automatic irrigation systems based on Al optimization algorithms
can easily adjust the operation of irrigation installations and equipment depending on the type of crop, the plant
growth phase and local environmental conditions. Experiments carried out by Rojas et al. (2024) showed that
by connecting an irrigation system to loT systems, a reduction in related costs by 33.8% was achieved for a
2-hectare crop of blueberries (Fig. 8). Also in this regard, Morchid et al. (2024) propose a complex solution for
automating the irrigation process, which can provide a multitude of data related to the need to carry out the
irrigation process and also transmit messages and information in real time to quickly reactivate the farmer.
Raouhi et al. (2023) presents a digital application based on artificial intelligence (AIDSII), which leverages loT-
based precision agriculture and CNN-LSTM models, providing a complete feedback system through mobile
and web technologies, allowing farmers to automate, optimize and streamline irrigation processes.

Irrigation
system

Computer monitoring
device

Actuator

Fig. 8 - Schematic of an Al-based intelligent irrigation system (adapted from Rojas et al, 2024)

The results of a comprehensive analysis by Younes et al. (2024) demonstrate the performance capability
of machine learning (ML) techniques that outperform conventional approaches. However, the use of machine
learning models in smart irrigation systems is still limited, and further efforts are needed to produce well-
designed and, most importantly, broadly applicable results. The application of Al tools through time series
analysis in the study of crop quality and soil control mechanism under conditions of a precise combination of
water and fertilizer is discussed by Xing and Wang (2024) from the point of view of the benefits of integration
in agriculture (Fig. 9).

Al models are widely employed in irrigation management to optimize water consumption and enhance
the efficiency of agricultural systems. The main application domains include: estimation of evapotranspiration
(ETo) and crop coefficients (Kc) for determining the actual water requirements of crops (Bounajra et al., 2024);
prediction of soil moisture content, using data from in-situ sensors (soil humidity, temperature, radiation,
precipitation) and imagery captured by satellites or drones (Alvim et al., 2022); development of smart irrigation
systems integrating sensors (soil moisture, atmospheric conditions), communication modules, and automated
decision algorithms to optimize irrigation schedules and water application rates (Nsoh et al., 2024); design of
hybrid models, combining neural networks, fuzzy logic, neuro-fuzzy systems, or algorithms such as Support
Vector Machines (SVM), Random Forest (RF), and adaptive regressions, particularly effective under
incomplete data or nonlinear relationships (Dolaptsis et al., 2024); predictive control and multi-objective
optimization of irrigation management, leveraging weather forecasts and soil state information to maximize
productivity and minimize water losses through Model Predictive Control (MPC) approaches (Liu et al., 2025);
Reinforcement Learning (RL) for adaptive decision-making, enabling dynamic adjustment of irrigation volumes
based on varying agroecosystem states (Del-Coco et al., 2024). Given the increasing risk of drought,
automation of irrigation systems and the generation of Al-based climate reports through the processing of loT
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data (temperature, humidity, soil moisture, etc.) have become essential for efficient water resource
management. These systems provide advanced analytics and predictive recommendations that support the
adaptation of agriculture to increasingly severe climatic phenomena (Gaitan et al., 2025).
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Fig. 9 - Integration of an intelligent system for study of crop quality
(adapted from Xing Y and Wang X, 2024)

By integrating water quality indices (total salinity, Sodium Adsorption Ratio — SAR, water pH, and
specific toxic ions such as CI7, B, and Na*) together with soil characteristics (texture, field capacity,
permeability, and initial salinity level) into Al models, soil salinization risks can be predicted at early stages.
Patel et al. (2002) highlight the advantages of employing Artificial Neural Networks (ANNs) for predicting salt
accumulation and determining the optimal irrigation volume required to maintain a balance between crop water
demand and soil protection. Suleymanov et al. (2023) propose a regional-scale salinization risk mapping
approach using satellite and agrometeorological data, applying Machine Learning algorithms (Random Forest
— RF) that achieve moderate to high predictive performance in modelling the spatial distribution of soil
properties. Comparative analyses of hydrological models demonstrate that the HYDRUS model provides the
highest accuracy in simulating soil-water—plant interactions (Marshall et al., 2025). Furthermore, integrating
the HYDRUS solute transport model with neural networks or genetic algorithms for optimizing irrigation and
soil leaching schedules enables precise estimation of leaching requirements.

There is extensive research focused on the optimization of the functional parameters of irrigation
systems. Seyedzadeh et al. (2019) developed a simulation method for irrigation flow uniformity as a function
of water temperature and operating pressure in drip irrigation systems, employing Al models such as Artificial
Neural Networks (ANN), Neuro-Fuzzy Sub-Cluster (NF-SC), Neuro-Fuzzy k-Means Clustering (NF-FCM), and
Least Squares Support Vector Machine (LS-SVM). The results demonstrated that all these Al-based models,
used to simulate the relationship between emitter discharge rate and nominal flow rate, achieved acceptable
prediction accuracy when using as input variables: operating pressure (0—240 kPa), water temperature (13—
53 °C), discharge coefficient, pressure exponent, and nominal discharge rate. The models yielded a mean
absolute error (MAE) of 8.8%, indicating reliable performance for modelling irrigation flow uniformity under
variable operating conditions.

Gonzélez Perea et al. (2018) proposed a predictive model of farmers’ behaviour based on Artificial
Neural Networks (ANN), fuzzy logic, and genetic algorithms, aimed at analysing irrigation water consumption.
The model was validated for rice, maize, and tomato crops in farms located in southwestern Spain. The authors
demonstrated that irrigation water requirements are influenced not only by agroclimatic and technical factors
but also by the human factor, namely farmers’ decisions and behavioural patterns. Therefore, it is necessary
to raise farmers’ awareness of their role in reducing water consumption through training programs, local
demonstrations, and pilot initiatives. Integrating such socio-economic and behavioural factors into Al models
for integrated agricultural resource management enables a more realistic representation of the decision-
making process and enhances the sustainability of irrigation and water-use strategies.
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Sustainable nutrient management is essential for increasing or maintaining crop yields, being one of the
most important production directions on which the yield and quality of agricultural products depend (Zhang et.
al., 2020; Noulas et. al., 2023). The process of personalized plant fertilization and nutrition starts from the
analysis of soil maps, the determination of nutrient deficiencies and plant health data, In their paper
Dobermann et al. (2022) show that critical actions regarding plant nutrition are related to proposals for nutrient
roadmaps focused on sustainability, implementation of digital and Al solutions for crop nutrition, establishment
of nutrient recovery and recycling processes as well as development of climate-smart fertilizers. Based on the
analysis of these variables, Al algorithms can further create variable application maps for different fertilizers.
Thus, the amount of fertilizer is adjusted in real time and applied only where needed (both over-fertilization,
which leads to groundwater pollution over time, and under-fertilization, which leads to a decrease in production
yield, are prevented).

Malashin et al. (2024) classified agricultural crops according to their macronutrient requirements (N, P,
K). The authors developed an Al-based yield prediction model integrating data on crop nutrient demands, soil
chemical properties, and climatic factors. The model employs Deep Neural Networks (DNN) combined with
Genetic Algorithms for system parameter optimization. The obtained results (R? = 0.92) demonstrate a high
level of model accuracy.

Jeevaganesh et al. (2022) developed an Al-based model integrating an AdaBoost algorithm for crop
yield prediction by combining meteorological data, N-P—K levels, soil structure, and pH, along with a RF
algorithm for generating fertilizer management recommendations. The model, validated using data from the
ten most cultivated crops across India, achieved a prediction accuracy of 82%.

Gao et al. (2023) proposed three ML models employing RF, Extreme Random Tree (ERT), and Extreme
Gradient Boosting (XGBoost) algorithms to predict yields based on historical data from maize, rice, and
soybean crops. The comparative analysis revealed that the ERT model exhibited the highest predictive
performance (R? > 0.75). The authors estimated that optimizing fertilization strategies based on the proposed
model could increase crop yields by 23.9% for maize, 13.3% for rice, and 20.3% for soybean.

Li and Yost (2000) introduced an Al-based nitrogen fertilization optimization method aimed at increasing
yields, reducing costs, and mitigating groundwater pollution caused by nitrate leaching. The model generates
and evaluates multiple split-application scenarios (small, frequent doses) compared to conventional methods,
based on the nitrogen cycle within the soil-plant system. The results indicate a reduction in nitrate leaching
from 36 to 7 kg N ha™ and an increase in profit from USD 570 to USD 935 ha™ for maize cultivation.

Khaliq et al. (2025) presented a comprehensive soil-crop—irrigation—fertilizer management system
integrating DL, IoT, and Explainable Artificial Intelligence (XAl). The findings demonstrate that DL models -
TabNet Regressor for soil analysis (R?* = 98.7%), Sparse Weighted Fusion Transformer (SwiFT) for crop
recommendation (R? = 98.75%), Transformer-based Tabular Learning (TTL) for irrigation optimization (R? =
99.13%), and TabNet Classifier for fertilizer management (R? = 99.3%) - achieve exceptionally high predictive
accuracy. The study concludes that these models can provide substantial decision support for irrigation
scheduling and nutrient management.

Similar to the process of personalized plant fertilization and nutrition is the process of selective
application of pesticides and herbicides. Finding a balance between the benefits of pesticide application and
the preservation of our ecosystems is crucial to ensuring sustainable agriculture, as the extensive use of
pesticides has raised concerns about the environment and human health (Gupta, 2023). Agricultural vehicles
(land or air) equipped with computer vision systems and Al interpretation and optimization algorithms can
accurately identify weeds or areas infested with pests. In this way, instead of pesticides or herbicides being
applied uniformly across the entire agricultural field, the Al system directs the treatment only to the affected
plants or areas, drastically reducing the volume of chemicals used. This not only lowers costs for farmers but
also minimizes the negative impact on the environment and human health.

Recent research demonstrates that Al models, when integrated with precision spraying technologies
(e.g., spot-spraying, Variable Rate Application — VRA, UAV sprayers, CNN/LiDAR-assisted sprayers), can
substantially reduce pesticide and herbicide consumption without compromising treatment efficacy. Notable
results include: a 2.3-fold reduction in pesticide and herbicide costs for soybean and wheat crops in Brazil
through spot-spraying technologies (Zanin et al., 2022); a 47% reduction in post-emergence herbicide use via
early site-specific spraying during the 2—4 and 6-8 leaf stages of maize, across four experimental fields in
southwestern Germany, based on weed infestation maps generated through CNN-based (MobileNetV2)
classification of UAV-acquired RGB imagery captured 2—4 days before spraying (Allmendinger et al., 2024);
and a 30.1% reduction in chemical agent usage for wheat achieved through LiDAR-assisted VRA drone
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spraying systems (Liu et al., 2025). Studies conducted in vineyards and orchards show that early detection
using CNN/YOLO-based analysis of imagery captured by in-field or drone-mounted cameras enables targeted
interventions, effectively reducing the need for broad-spectrum preventive treatments. The integration of these
systems with population forecasting models further enhances intervention efficiency (Wu et al., 2025).
Moreover, intelligent spraying systems (spot-spraying/VRA), supported by Al-driven detection and
multisensory data fusion, can significantly decrease the overall volume of applied substances — with
reductions ranging from 20-30% in LiIDAR/RGB-D experimental studies to over 70% in commercial ultra-
precision spraying systems (Salcedo et al., 2021).

AGRICULTURAL ROBOTICS

The unprecedented development of robots, especially autonomous ones, provides the necessary
opportunities to eliminate/reduce physical tasks in agriculture. By integrating Al techniques and tools into the
construction and operation of agricultural robots used for sowing, planting, harvesting and managing diseases
and pests, it is possible to increase the efficiency of the agricultural process with minimal human intervention
(Fig. 10). The integration of Al into autonomous robots transforms the way physical tasks in agriculture are
performed, increasing economic efficiency and reducing dependence on manual labour.

Autonomous
and Gentle
Harvesting

Sowing and Weed
Planting Management

Agricultural
Robotics

Fig. 10 - Applications of artificial intelligence in agricultural robotics

In terms of sowing and planting processes, autonomous robots have been developed that can navigate
the field with sub-centimetre precision. Based on these performances, an optimal distance between plants and
a uniform planting depth can be ensured (and especially a constant in these two dimensions of the processes),
which ultimately leads to better germination and uniform growth of crops. Lu et al. (2024) proposed an Al
segmentation algorithm used to separate the adhering green onion seeds and count the number of green
onion seeds in each hole to improve the quality of the sowing process. The results showed that the average
relative error of the system's qualification rate is 2.24%, and the average absolute errors of the reseeding rate
and the emptying rate are 1.31% and 0.71%, respectively. The absolute error of the average particle number
is 0.025 at an overall accuracy rate of the integrated sowing quality detection of 98% (with an average
processing time per image of 0.91 s).

The development of robots capable of harvesting delicate crops such as strawberries, tomatoes or
peppers is one of the most impressive technical achievements of our time. These robots use computer vision
and deep learning Al algorithms to identify ripe and ready-to-harvest fruits and carefully pick them, avoiding
damage. This is particularly valuable in the context of two major problems facing the agricultural sector: labour
shortages and the need to reduce post-harvest losses in order to streamline economic costs. There are already
Al-equipped robots in agriculture that can distinguish between cultivated plants and weeds (via computer
vision). Instead of applying herbicides to the entire agricultural field, some robots use mechanical arms
equipped with hot bio-oil nozzles or high-precision lasers to physically eliminate only weeds, offering an
environmentally friendly alternative to total chemical control.

ANIMAL HEALTH AND LIVESTOCK

In addition to the crop agricultural sector, the introduction of Al techniques and tools in the livestock
sector contributes significantly to animal welfare, production optimization and disease prevention in livestock
farms through monitoring operations of animal behaviour and health, diet and nutrition optimization, disease
prediction and prevention (Fig. 11).
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Fig. 11 - Applications of artificial intelligence in animal health and livestock

Behavioural and health monitoring is achieved through the use of smart cameras and sensors,
equipment that continuously monitors the behaviour of farm animals (cows, pigs, poultry). Al algorithms
analyse the data obtained to detect anomalies, such as changes in feeding patterns, activity levels, posture or
vocalizations, which can indicate stress, illness or even imminent birth. Automatic alerts that can be generated
based on these real-time analyses allow farmers to intervene quickly, reducing losses and improving animal
welfare. Animal face recognition is of significant importance for modern intensive animal husbandry, and for
this purpose Zhang et al. (2024) proposed an improved Al tool based on the ResNet50 network. Experimental
results show that the new model (ResNet-SFR) outperforms traditional methods and other DL models,
achieving a recognition accuracy of 96.6% on the sheep face image dataset. Furthermore, compared to
ResNet50, the proposed model exhibits a 2.4% improvement in F1 score and a 2.3% improvement in accuracy.

Furthermore, Al-based systems obtain and analyse individual data about each animal (e.g. age, weight,
breed, activity level, lactation/gestation stage) and can customize feed rations based on these parameters.
This precision feeding maximizes feed conversion, reduces feed waste, and optimizes growth or production of
related products (milk, meat, eggs). Moreover, automatic sensors and actuators can even detect how much
each animal eats and drinks on an individual level, automatically adjusting the amounts set/optimized by the
farmer based on Al analysis. An important activity in the specifics of the animal breeding process is also the
activity of disease prediction and prevention. By integrating data from sensors (body temperature, heart rate),
laboratory analyses, meteorological information, and epidemiological data, Al predictive models can identify
the risks of certain infectious or metabolic diseases based on patterns. This predictive capacity is a very
important factor because it allows farmers to take preventive measures, through actions (manual or automatic)
in real time related to adjusting ventilation, isolating suspicious animals, or administering early treatments,
limiting the spread of diseases throughout the farm.

DL models, particularly CNN and Recurrent Neural Networks (RNN), have demonstrated superior
performance in the visual and behavioural monitoring of livestock. For instance, CNN-based approaches
enabled body weight estimation in pigs with an error rate below 2% (Kwon et al., 2024) and mastitis detection
in dairy cows with over 90% accuracy (Liu et al., 2025). These outcomes have a direct impact on reducing
production losses and veterinary costs through early interventions and optimized nutrition management.

RL models have been successfully applied to automated feeding systems and agricultural robot
management, achieving cost reductions of 8—12% and more efficient resource utilization (water, feed, energy)
(Pawar et al., 2024).

Conversely, Bayesian models and traditional ML algorithms (RF, SVM) remain widely used for
automated diagnosis of cattle and swine diseases, achieving 85-95% accuracy in detecting mastitis or
digestive infections, while reducing veterinary treatment costs by 20-30% (Pfrombeck et al., 2025).

A major technological advancement is represented by multimodal models and the digital twin concept,
which integrate video, acoustic, and sensor data to create real-time virtual representations of animals (Han et
al., 2022; Zhang et al., 2025). These systems provide a holistic view of physiological and behavioural states,
enabling proactive interventions and animal welfare optimization, while reducing economic risks.

Big data and ensemble learning models (XGBoost and Deep Fusion) have proven effective for
integrated farm management. They can reduce total operational costs by 10—20% and increase productivity
by 15-25% by simultaneously correlating environmental, nutritional, and physiological parameters (Chase and
Fortina, 2023). In advanced smart dairy and smart pig feeding systems, annual savings of up to USD 40,000
and substantial reductions in greenhouse gas emissions have been reported (Pomar, 2019).
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Overall, the correlation between Al models and achieved benefits is positive and exponential up to a
certain technological threshold. While increased algorithmic complexity enhances prediction accuracy and
decision-making efficiency, marginal returns may decline in the absence of robust data infrastructure.
Nevertheless, recent literature confirms that the integration of Al in animal husbandry leads to lower operational
costs, higher productivity, and improved animal health and welfare, thereby reinforcing the strategic direction
of smart and sustainable agriculture (McNicol et al., 2024).

SUPPLY CHAIN MANAGEMENT

Optimizing the flow of agricultural products from farm to consumer ensures efficiency, traceability and
reduces losses, and in this context, Al plays an important role through its ability to propose models for
optimizing all these processes (Fig. 12). The forecast of demand and prices in the market is achieved by
analyzing large volumes of existing data related to: market, consumption trends and economic events. These
types of data are taken and introduced into various Al algorithms, which can forecast with increased accuracy
future trends in demand/supply for various agricultural products and price fluctuations. This information is vital
for farmers in economic business planning, in planning the type of crops grown, setting prices and managing
stocks.

Logistics and
Transport
Optimization

Market Demand
and Price
Forecasting

Traceability and
Food Security

Supply Chain
Management

Fig. 12 - Applications of artificial intelligence in supply chain management

Due to its ability to assist in tasks such as fault diagnosis and detection, system commissioning, and
agricultural energy efficiency assessment of a crop production system, the expected yield of agricultural
production is an important consideration in energy management. The main aim of the study by Nabavi-
Pelesaraei et al. (2021) was to suggest a technique for predicting agricultural yields from an energy perspective
by modeling energy consumption and forecasting energy production for various agricultural products using
ANN and adaptive neuro-fuzzy inference systems (ANFIS). Nguyen et al. (2024) emphasize that by integrating
artificial intelligence into the supply chain, farmers in Vietham can make more informed decisions, optimize
resources, and minimize risks, and artificial intelligence can help bridge the gap between smallholder farmers
and the market by facilitating better access to information. Agricultural products have as their purpose to be
offered to the market so that the transport of products to interested markets represents another area of interest
in agriculture. The optimization of logistics and the transport of products can be optimized through Al
techniques for maximum efficiency of the exploitation of means of transport with a minimum of fuel
consumption. Also, transport routes for perishable products (existing especially in agriculture and the food
industry) can be optimized, taking into account traffic conditions, weather forecasts and loading capacity and
type of vehicles. Intelligent systems can (at a complex level) manage delivery schedules, reducing transit time
and ensuring that products arrive at their destination in optimal conditions, thus minimizing losses in the supply
chain.

Al applications are also being developed that optimize the dynamics of specific processes within
agricultural warehouses. In this regard, the study by Lv and Li (2025) proposes a method that uses a target
detection algorithm to optimize the dynamic characteristics of robots in an agricultural warehouse. The method
initially uses the YOLOVS5 target detection algorithm to recognize dynamic targets in images captured from the
warehouse environment and the final test on the TUM dataset shows that the proposed system with improved
vision increases the localization accuracy by 91.47% compared to other Al tools in highly dynamic scenes.

The importance of fruit counting in agricultural production management is increasing, becoming an
indispensable management tool for agricultural producers, and in this regard, a method for detecting and
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sorting fruits using Al methods was proposed by Yang (2024). The results show that the mAP values of the
proposed AD-YOLO model are 3.1% higher than those of the YOLOv8 model, reaching 96.4%. The improved
tracking algorithm has 297 fewer ID switches, which is 35.6% less than the original algorithm. The multi-object
tracking accuracy of the improved algorithm reached 85.6%, and the average counting error was reduced to
0.07. The R2 coefficient of determination between the actual value and the predicted value reached 0.98.

Estimating energy use targets for aquaculture is imperative to reduce carbon emissions and energy
waste. Therefore, in the study conducted by Elahi and Khalid (2022), target energy consumption amounts were
determined to reduce environmental emissions of aquaculture farms using Al (ANN) tools. Energy use indices
such as energy use efficiency, bioenergy use efficiency, and energy productivity can be improved by 20%,
16%, and 14%, respectively, if farmers use target amounts of energy inputs suggested by the Al method. Total
energy and bioenergy consumption are reduced by 21% and 22%, respectively, and greenhouse gas
emissions (CO2 per farm) were reduced by 23% by using optimized energy input solutions provided by Al.
The application of predictive maintenance using artificial intelligence tools (machine learning models) for
agricultural equipment, with the aim of increasing the inefficiency of an agricultural farm, was carried out by
losif et al. (2025). A predictive maintenance framework was developed using seven machine learning models:
Isolation Forest, One-Class SVM, KMeans, DBSCAN, Autoencoders, Convolutional Neural Networks and
XGBoost, to analyze the maintenance parameters of a tractor hydraulic system, with effects on optimizing
maintenance schedules, reducing unplanned downtime and extending the life of the equipment Al-based
technologies enable complete traceability of agricultural products, by recording and monitoring every step of
the supply chain — from producer to consumer. Consumers can see the product history, information about the
production farm, cultivation methods (e.g. organic or not, use of pesticides and/or herbicides, etc.) and harvest
date. This increases the transparency of agricultural processes, provides consumer confidence and helps to
quickly identify the source in case of food safety issues.

CONCLUSIONS

The need for the evolution of agriculture to achieve the desired quantity of agricultural products,
combined with the need for these products to be produced on a sustainable basis, makes the use of Al tools
and methods mandatory. The possibilities and areas of application in agriculture are vast, starting from
planting, irrigation, fertilization, weeding, spraying and harvesting crops to farm management and the fusion of
satellite data with those from agricultural fields. This is due to the fact that the power of Al methods in detecting,
analysing and estimating data exceeds that of traditional techniques. However, it should be noted that there
are still barriers that limit the large-scale incorporation of Al tools in agricultural farms, and in this regard,
governments must develop, adopt and implement policies to support farmers. Several strategies that are
immediately and potentially practically applicable can help farmers overcome the obstacles to integrating Al
into agriculture:

¢ Increasing awareness and cooperation among farmers, technology providers, and policymakers

e Providing financial incentives and/or local, regional, and federal grants to farmers to help them cover
the high upfront costs of Al technology, increasing funding for building internet access and IT
infrastructure in rural areas.

¢ Education and training programs (through specialized workshops and courses) are also needed to close
the current skills gap among farmers.

These immediate initiatives can show farmers the real benefits of Al in agriculture, which can simplify
their adoption of these cutting-edge technologies. Creating Al models and tools that are easy to use and require
little technical knowledge can help farmers integrate Al into their daily operations. Clear policies and
regulations should be implemented to protect farmers' production data, to address concerns about data privacy
and ownership.
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